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Abstract
The homotopy analysis method (HAM) is used to find approximate analytical solutions of
continuous population models for single and interacting species. The homotopy analysis
method contains the auxiliary parameter ~, which provides us with a simple way to adjust
and control the convergence region of series solution. the solutions are compared with the
numerical results obtained using NDSolve, an ordinary differential equation solver found
in the Mathematica package and a good agreement is found. Also the solutions are com-
pared with the available analytic results obtained by other methods and more accurate
and convergent series solution found. The convergence region is also computed which
shows the validity of the HAM solution. This method is reliable and manageable.
Keywords : Homotopy analysis method; Convergence-controller parameter; Nonlinear differential

equations; Logistic growth; Predator-prey models.

1 Introduction

The homotopy analysis method (HAM) is an analytical technique for solving nonlinear
differential equations. Proposed by Liao in 1992 [1], the technique is superior to the tra-
ditional perturbation methods in that it leads to convergent series solutions of strongly
nonlinear problems, independent of any small or large physical parameter associated with
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the problem [2]. The HAM provides a more viable alternative to nonperturbation tech-
niques such as the Adomian decomposition method (ADM) [3, 4, 5] and other techniques
that cannot guarantee the convergence of the solution series and may be only valid for
weakly nonlinear problems [2]. We note here that He’s homotopy perturbation method
(HPM) [6, 7] is only a special case of the HAM [8]. Indeed Liao [9] makes a compelling
case that the Adomian decomposition method, the Lyapunov artificial small parameter
method and the δ-expansion method are nothing but special cases of the HAM. In re-
cent years; this method has been successfully employed to solve many in science and
engineering such as the viscous flows of non-Newtonian fluids [10, 11, 12, 13, 14, 15, 16],
the KdV -type equations [17, 18, 19, 20, 21], Glauert-jet problem [22],Burgers-Huxley
equation [23], time-dependent Emden-Fowler type equations [24], differential-difference
equation [25], the MHD Falkner-Skan flow [26], multiple solutions of nonlinear problems
[27, 28, 29, 30], Schrdinger equations [31], two-point nonlinear boundary value problems
[32],a new technique of using homotopy analysis method for solving high-order nonlinear
differential equations [33], and more other applications [34, 35, 36, 37, 38, 39, 40].

The main aim of this paper is to present applications of the homotopy analysis method
(HAM) to four non-linear biological problems. The first problem is a logistic growth model
in a population whereas the second one is a prey-predator model: Lotka-Volterra system.
The third problem is a simple 2-species Lotka-Volterra competition model, and the fourth
one is a prey-predator model with limit cycle periodic behavior.

2 The homotopy analysis method

To illustrate the basic concept of the HAM, we consider the following general nonlinear
differential equation

N [u(τ)]− f (τ) = 0 (2.1)

where N is a nonlinear operator, τ denote independent variable , f(τ) is a known analytic
function, and u(τ) is an unknown function. By means of generalizing the traditional
homotopy method, Liao [1] constructs the so-called zero-order deformation equation.

(1 − q)L[Φ(τ ; q)− u0 (τ)] = q~[N [Φ(τ ; q)− f (τ)]] (2.2)

where q ∈ [0, 1] denote the so-called embedding parameter. ~ ̸= 0 is an auxiliary parame-
ter, L is an auxiliary linear operator. The homotopy analysis method is based on a kind
of continuous mapping u(τ) → Φ(τ, q) , Φ(τ, q) is an unknown function and u0(τ) is an
initial guess of u(τ) . It is obvious that when the embedding parameter q = 0 and q = 1,
Eq. (2.2) becomes

Φ(τ ; 0 ) = u0 (τ),Φ(τ ; 1 ) = u(τ) (2.3)

respectively. Thus as q increases from 0 to 1, the solution Φ(τ, q) varies from the initial
guess u0(τ) to the solution u(τ) . In topology, this kind of variation is the called de-
formation Eq. (2.2) construct the homotopy Φ(τ, q) , and Eq. (2.2) is called zero-order
deformation equation. Having the freedom to choose the auxiliary parameter ~, the initial
approximation u0(τ) , and the auxiliary linear operator L, we can assume that all of them
are properly chosen so that the solution Φ(τ, q) of the zero-order deformation Eq. (2.2)
exists for 0 ≤ q ≤ 1. Expanding Φ(τ, q) in Taylor series with respect to q, one has

Φ(τ, q) = u0(τ) +

∞∑
m=1

um(τ)qm, (2.4)
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where

um(x, t) =
1

m!

∂mΦ(x, t; q)

∂qm
|q=0 (2.5)

Assume that the auxiliary parameter ~ ,the initial approximation u0(τ) and the auxiliary
linear operator L are so properly chosen that the series Eq. (2.4) converges at q = 1 and

Φ(τ, 1) = u0(τ) +

∞∑
m=1

um(τ), (2.6)

which must be one of solutions of the original nonlinear equation, as proved by Liao [1].
As ~ = −1, Eq. (2.2) becomes

(1 − q)L[Φ(τ ; q)− u0 (τ)] + q [N [Φ(τ ; q)− f (τ)]] = 0 (2.7)

which is used mostly in the homotopy-perturbation method [7]. According to the definition
Eq. (2.5), the governing equation and corresponding initial condition of um(x, t) can be
deduced from the zero-order deformation Eq. (2.2). Define the vector

−→u n(x, t) = u0(x, t), u1(x, t), u2(x, t), . . . , un(x, t).

Differentiating Eq. (2.2) m times with respect to the embedding parameter q and
then setting q = 0 and finally dividing them by m! , we have the so-called mth-order
deformation equation:

L[um(τ)− χmum−1 (τ)] = ~R(−→u m−1 ), (2.8)

where

R(−→u m−1) =
1

(m− 1)!

∂m−1[N [Φ(τ ; q)− r(τ)]]

∂qm−1
|q=0, (2.9)

and 
χm = 0, m ≤ 1,

χm = 1, otherwise
(2.10)

It should be emphasized that um(τ) for m ≥ 1 is governed by the linear Eq. (2.8) with
linear boundary conditions that come from the original problem, which can be solved by
the symbolic computation software such as Mathematica, Maple and Matlab.

3 Case studies

3.1 Case study 1

We first consider the logistic growth in a population as a single species model to be
governed by [41]

dN

dt
= rN(1−N/K), (3.11)

where r and K are positive constants. Here N = N(t) represents the population of the
species at time t, and r(1−N/K) and is the per capita growth rate, and K is the carrying
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capacity of the environment. Let u(τ) = N(t)/K, τ = rt.
Then Eq. (3.11) becomes

dN

dτ
= u(1− u). (3.12)

If N(0) = N0, then u(0) = N0/K .Therefore, the analytical solution of Eq. (3.12) is

u(τ) =
1

1 + (K/N0 − 1)e−t
(3.13)

For HAM solution we choose the linear operator

L[Φ(τ ; q)] =
∂Φ(τ ; q)

∂τ
, (3.14)

with the property L[c1] = 0, where c1 is a constant. Using initial approximation

u0(τ) = N0/K, (3.15)

We define a nonlinear operator as

N [Φ(τ ; q)] = ∂Φ(τ ;q)
∂τ − Φ(τ ; q) + (Φ(τ ; q))2,

where

Rm(−→u m−1(τ)) =
∂um−1(τ)

∂τ
− um−1(τ) +

m−1∑
i=0

ui(τ)um−1−i(τ) (3.16)

Now the solution of the mth- order deformation Eq. (2.8) for m ≥ 1 becomes

um(τ) = χmum−1(τ) + ~
∫
R(−→u m−1(τ))dτ + c1.

where the constant of integration c1 is determined by the initial conditions

um(0) = 0, (3.17)

and determined by Eq. (2.10) . We now obtain by HAM

u1(τ) = ~(−N0
K +

N2
0

K2 )τ,

u2(τ) = (−~N0
K − ~2(K−N0)N0

K2 +
~N2

0
K2 )τ + ~2(K−2N0)(K−N0)N0

2K3 τ2,

um(τ)(m = 3, 4, . . .)can be calculated similarly. Then the series solution expression by
HAM can be written in the form

UM (τ, ~) =
M∑
i=0

ui(τ, ~), (3.18)

Recall that
u(τ) = lim

M→∞
UM , (3.19)
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Figure 1: The ~ curves of (a) U15(0.1), (b) U15(0.6),(c) U15(1), and (d)U15(2) by HAM for
logistic growth Eq. (3.12)

For numerical comparison we take N0 = 2 and K = 1 [42] therefore Eq. (3.13) becomes

u(τ) =
2

2− exp−τ
, u(0) = 2. (3.20)

Figs 1a, 1b, 1c and 1d show the ~ -curves obtained from the U15(τ) HAM approxima-
tion solutions of Eq. (3.12) at different values of τ . These figures show the interval of ~
which the value of U15(τ) is constant at certain τ , we choose the horizontal line parallel
to x-axis as valid ~ region which provides us with a simple way to adjust and control the
convergence region of series solution, from this figures ~ = −1 is valid only for small τ
(0 < τ < 0.375), but −0.44 ≤ ~ ≤ −0.15 are valid for larger (0 < τ < 2). To demonstrate
the efficiency of HAM for solving logistic growth model Eq. (3.12) we plot many figures.

Figs 2 and 3 show a very good approximation to the analytical solution of logistic
growth model in the time interval (0 < τ < 2) by using only 6 terms of the series given
by Eq. (3.18) which indicates that the speed of convergence of HAM at ~ = −0.38 is very
fast. In addition, a better approximation to the exact solution can be achieved by adding
new terms to this series as shown in figs 2 and 3. Figs 4 and 5 show that ~ = −1 give
good approximation for only (τ < 0.375) as the same result obtained by HPM [42],[43]
and ADM [44] using 9 terms of the series. As mention before HPM and ADM are special
cases of HAM (~ = −1). The comparison between U8(τ) of HAM at ~ = −0.38 and HPM
(HAM ~ = −1) shows the importance of ~ .
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Figure 2: Comparison between U5(τ), U8(τ) and U15(τ) of HAM and u(τ) for logistic
growth model Eq. (3.12) with ~ = −0.38.
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Figure 3: The absolute errors of U5(τ), U8(τ) and U15(τ) of HAM for logistic growth
model Eq. (3.12) with ~ = −0.38.

0.1 0.2 0.3 0.4 0.5
Τ

0.02

0.04

0.06

0.08

0.1
Absolute error

U15

U8

U5

Figure 4: The absolute errors of U5(τ), U8(τ) and U15(τ) of HAM and u(τ) for logistic
growth model Eq. (3.12) at 0 < τ < 0.5 with ~ = −1.

3.2 Case study 2

We consider the Predator-Prey Models: Lotka-Volterra systems as an interacting species
model to be governed by [41]

dN

dt
= N(a− bP ),

dP

dt
= P (cN − d). (3.21)
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Figure 5: The absolute errors of U5(τ), U8(τ) and U15(τ) of HAM and u(τ) for logistic
growth model Eq. (3.12) at 0 < τ < 2 with ~ = −1.
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Figure 6: Comparison between the errors of U8(τ) at ~ = −1 and U8(τ) at ~ = −0.38 of
HAM for logistic growth model Eq. (3.12) at 0 < τ < 2.

where a, b, c and d are constants. Here N = N(t) is the prey population and P = P (t)

that of the predator at time t. Let u(τ) = cN(t)
d , v(τ) = bP (t)

a , τ = at, α = d/a, then Eq.
(3.21) becomes

du

dτ
= u(1− v),

dv

dτ
= αv(u− 1). (3.22)

According to HAM, we choose the auxiliary linear operator

L[Φ1(τ ; q)] =
∂Φ1(τ ; q)

∂τ
, L[Φ2(τ ; q)] =

∂Φ2(τ ; q)

∂τ
, (3.23)

with the property L[ci] = 0, where ci(i = 1, 2) are integral constants. Furthermore, Eq.
(3.22) suggest that a system of nonlinear operators as

N1[Φ1(τ ; q)] =
∂Φ1
∂τ − Φ1 +Φ1Φ2,

N2[Φ2(τ ; q)] =
∂Φ2
∂τ − αΦ2Φ1 + αΦ2,

with

R1,m(−→u m−1) =
∂um−1

∂τ − um−1 +
∑m−1

i=0 uium−1−i,
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R2,m(−→v m−1) =
∂vm−1

∂τ − α
∑m−1

i=0 uivm−1−i + αvm−1

Now the solution of the mth-order deformation Eq. (2.8) for m ≥ 1 become

um(τ) = χmum−1(τ) + ~L−1[R1,m(−→u m−1)] = χmum−1(τ) + ~
∫

R1,m(−→u m−1)dτ + c1,

(3.24)

and

vm(τ) = χmvm−1(τ) + ~L−1[R2,m(−→v m−1)] = χmvm−1(τ) + ~
∫

R2,m(−→v m−1)dτ + c2,

(3.25)

where the coefficients c1 and c2 are determined respectively by the initial conditions for
m ≥ 1

um(0) = 0, vm(0) = 0. (3.26)

We choose the initial approximation [42]

u0(τ) = u(0) = 1.3,
v0(τ) = v(0) = 0.6.

We now successively obtain

u1(τ) = −0.52~τ ,
v1(τ) = −0.18α~τ

um(τ) and vm(τ) (m = 2, 3, . . .) can be calculated similarly. Then the series solution
expression by HAM can be written in the form

UM (τ, ~) =
M∑

m=0

um(τ, ~), (3.27)

VM (τ, ~) =
M∑

m=0

vm(τ, ~). (3.28)

For numerical comparison, we take α = 1 [42]. Figs 7a and 7b show the ~-curves
obtained from the U15(τ) and V15(τ) HAM approximation solutions of Eq. (3.22) at
different values of τ . These figures show that ~ = −1 is the proper value for convergent
the series Eq. (3.27) and Eq. (3.28). Figs 8 and 9 show the comparison between the
U4(τ), U10(τ) and U15(τ) HAM solutions of the system Eq. (3.22) with the numerical
solutions and the comparison between , and HAM solutions of the system Eq. (3.28) with
the numerical solutions respectively. We obtain these numerical solutions using NDSolve,
an ordinary differential equation solver found in the Mathematica package. It is clear from
both of the figures that there is a very close agreement between the solutions for u (prey
population), v (predator population) and numerical solution. A better approximation to
the exact solution can be achieved by adding new terms to this series as shown in figs 10
and 11. The obtained results in this example are the same results of HPM [42], [43] and
ADM [44].
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Figure 7: The ~ curves of (a) U15(1), (b) V15(1) by HAM for Predator-Prey Models at
α = 1 Eq.(3.22)
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Figure 8: Comparison between U4(τ), U10(τ) and U15(τ) of HAM and numerical solution
u(τ) for Predator-Prey Models Eq. (3.22) with α = 1 and ~ = −1.
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Figure 9: Comparison between V4(τ), V10(τ) and V15(τ) of HAM and numerical solution
v(τ) for Predator-Prey Models Eq. (3.22) with α = 1 and ~ = −1.

3.3 Case study 3

We consider the simple 2-species Lotka-Volterra competition model with each species N1
and N2 having logistic growth in the absence of the other. Inclusion of logistic growth in
the Lotka-Volterra systems makes them much more realistic but to highlight the principle
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we consider the simpler model which nevertheless reflects many of the properties of more
complicated models, particularly as regards stability. We thus consider the system [41]

dN1

dt
= r1N1[1−

N1

K1
− b12

N2

K1
] ,

dN2

dt
= r2N2[1−

N2

K2
− b21

N2

K2
]. (3.29)

where r1,K1, r2,K2, b12 and b21 are all positive constants and the r’s are the linear birth
rates and the K’s are the carrying capacities. The b12 and b21 measure the competitive
effect of N2 on N1 and N1 on N2 respectively, they are generally not equal. Let

u = N1
K1

, v = N2
K2

, τ = r1t, ρ = r2
r1
, a = b12

K2
K1

, b = b21
K1
K2

,

The system given by Eq. (3.29) becomes

du

dτ
= u(1− u− αv),

dv

dτ
= ρv(1− v − bu). (3.30)

According to HAM, we choose the auxiliary linear operator Eq. (3.23). Furthermore, Eq.
(3.30) suggest that we define a system of nonlinear operators as

N1[Φ1(τ ; q)] =
∂Φ1
∂τ − Φ1 +Φ1

2 + aΦ1Φ2,

N2[Φ2(τ ; q)] =
∂Φ2
∂τ − ρΦ2 + ρΦ2

2 + ρbΦ1Φ2,

with

R1,m(−→u m−1) =
∂um−1

∂τ − um−1 +
∑m−1

i=0 uium−1−i + a
∑m−1

i=0 uivm−1−i,

R2,m(−→v m−1) =
∂vm−1

∂τ − ρvm−1 + ρ
∑m−1

i=0 vivm−1−i + ρb
∑m−1

i=0 uivm−1−i

Now the solution of the mth-order deformation Eq. (2.8) for m ≥ 1 become

um(τ) = χmum−1(τ) + ~L−1[R1,m(−→u m−1)] = χmum−1(τ) + ~
∫

R1,m(−→u m−1)dτ + c1,

(3.31)

and

vm(τ) = χmvm−1(τ) + ~L−1[R2,m(−→v m−1)] = χmvm−1(τ) + ~
∫

R2,m(−→v m−1)dτ + c2,

(3.32)
where the coefficients c1 and c2 are determined respectively by the initial conditions Eq.
(2.8)for m ≥ 1. We choose the initial approximation [42]

u0(τ) = u(0) = 1,
v0(τ) = v(0) = 1

We now successively obtain

u1(τ) = a~τ ,
v1(τ) = ~τ(1 + b− ρ)
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Figure 10: The ~ curves of (a) U12(0.1), (b) V12(0.1),(c) U12(0.8), and (d)V12(0.8) by HAM
for Eq. (3.30)

um(τ) and vm(τ) (m = 2, 3, . . .) can be calculated similarly. Then the series solution
expression by HAM can be written in the form Eq. (3.27) and Eq. (3.28)

For numerical comparison, we take a = 1, ρ = 1 and b = 0.8 [42]. Figs 10a and
10b show the ~-curves obtained from the U12(τ) HAM approximation solutions of Eq.
(3.30) at different values of τ . These figures show that ~ = −1 is valid only for small
τ (0 < τ < 0.25), but around ~ = −0.5 are valid for larger τ (0 < τ < 1.25).Figs 11
and 12 show the absolute errors of U4(τ) and U12(τ) of HAM and the absolute errors of
V4(τ) and V12(τ) of HAM of the system Eq. (3.30) using ~ = −0.5 with respect to the
numerical solution respectively. We obtain these numerical solutions using NDSolve. It is
clear from both of the figures that there is a very close agreement between the solutions
for u, v and numerical solutions. Also a better approximation to the exact solution can
be achieved by adding new terms to this series using ~ = −0.5, which indicates that the
speed of convergence of HAM at ~ = −0.5 is very fast. Figs 13 and 14 show that ~ = −1
gives good approximation for only (0 < τ < 0.25) as the same result obtained by HPM
[42] using 5 terms of the series. The comparison between U4(τ)of HAM at ~ = −0.5 and
HPM ( ~ = −1 HAM) shows the importance of ~ .

3.4 Case study 4

We consider a prey-predator model with limit cycle periodic behavior [41]:

dN

dt
= N [r(1− N

K
)− kP

N +D
],

dP

dt
= P [r(s(1− hP

N
)]. (3.33)
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Figure 11: The absolute errors of U4(τ) and U12(τ) of HAM with ~ = −0.5 for Eq. (3.30.

0.25 0.5 0.75 1 1.25 1.5
Τ

0.002

0.004

0.006

0.008

0.01
Absolute error

V12

V4

Figure 12: The absolute errors of V4(τ) and V12(τ) of HAM with ~ = −0.5 for Eq. (3.30.
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Figure 13: The absolute errors of U4(τ) and U12(τ) of HAM at ~ = −1 for Eq. (3.30).
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Figure 14: The absolute errors of V4(τ) and V12(τ) of HAM at ~ = −1 for Eq. (3.30).
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(3.30).
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where r,K, r,D, s and h are all positive constants. Let

u = N
K , v = hP

K , τ = rt , a = k
hr , b = s

r , d = D
K ,

The system given by Eq. (3.33) becomes

du

dτ
= u(1− u)− auv

u+ d
,

dv

dτ
= bv(1− v

u
). (3.34)

According to HAM, we choose the auxiliary linear operator Eq. (3.23). Furthermore, Eq.
(3.34) suggest that we define a system of nonlinear operators as

N1[Φ1(τ ; q)] =
∂Φ1
∂τ − Φ1 +Φ1

2 + aΦ1Φ1
Φ1+d ,

N2[Φ2(τ ; q)] =
∂Φ2
∂τ − bΦ2 +

bΦ2
2

Φ1
,

and from Eq. (2.9), we get

R1,1(
−→u 0) =

∂u0
∂τ − u0 + u0

2 + au0v0
d+u0

,

R1,1(
−→v 0) =

∂v0
∂τ − bv0(1− v0

u0
),

R1,2(
−→u 1) =

∂u1
∂τ − u1 + 2u0v0 + au1v0+u0v1

d+u0
− au1v0u0

(d+u0)
2,

R1,2(
−→v 1) =

∂v1
∂τ − bv1 +

2bv0v1
u0

− bv20u1

u2
0

,

...
Now the solution of the mth-order deformation Eq. (2.8) for m ≥ 1 become

um(τ) = χmum−1(τ) + ~L−1[R1,m(−→u m−1)] = χmum−1(τ) + ~
∫

R1,m(−→u m−1)dτ + c1,

(3.35)

and

vm(τ) = χmvm−1(τ) + ~L−1[R2,m(−→v m−1)] = χmvm−1(τ) + ~
∫

R2,m(−→v m−1)dτ + c2,

(3.36)

where the coefficients c1 and c2 are determined respectively by the initial conditions Eq.
(3.26)for m ≥ 1. We choose the initial approximation [42]

u0(τ) = u(0) = 1.3,

v0(τ) = v(0) = 1.2

We now successively obtain

u1(τ) = (0.39 + 1.56a
1.3+d)~τ ,
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Figure 17: The ~ curves of (a) U4(0.01), (b) V4(0.01),(c) U4(0.2), and (d)V4(0.2) by HAM
for Eq. (3.34)

v1(τ) = −0.0923077b~τ

um(τ) and vm(τ) (m = 2, 3, . . .) can be calculated similarly. Then the series solution ex-
pression by HAM can be written in the form Eq. (3.27) and Eq. (3.28).
For numerical comparison we take a = 1 ,d = 10 and b = 5 [42].
Figures 17a and 17b show the ~-curves obtained from the U4(τ) and V4(τ) HAM approx-
imation solutions of Eq. (3.34) at different values of τ . These figures show that ~ = −1 is
valid only for small τ (0 < τ < 0.6) for U4(τ) and (0 < τ < 0.12) for V4(τ) , but ~ = −0.85
is valid for larger τ (0 < τ < 0.9) for U4(τ) and (0 < τ < 0.23) for V4(τ) . Figs 18 and
19 show a very good approximation to the numerical solution of Eq. (3.34) using only 5
terms of the series U4(τ) and V4(τ) given by Eq. (3.27) and Eq. (3.28) respectively with
~ = −0.85 and ~ = −1 which indicates that the series solution of HAM at ~ = −0.85
is more accurate than series solution of HAM at ~ = −1. We obtain these numerical
solutions using NDSolve. A better approximation for larger time interval can be achieved
by adding new terms to the series using ~ = −0.85 as shown in figs 20 and 21.

4 Conclusions

In this work, the homotopy analysis method (HAM) was used for finding the analytical
solutions of continuous population models for single and interacting species. The validity
of our solutions is verified by the numerical and other analytic results. We analyzed the
convergence of the obtained series solutions, carefully. The convergence analysis elucidates
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Τ
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Figure 18: Comparison between U4(τ) with ~ = −0.85 , U4(τ) with ~ = −1 of HAM and
numerical solution for Eq. (3.34).
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Ñ = -0.85
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Figure 19: Comparison between V4(τ) with ~ = −0.85 , V4(τ) with ~ = −1 of HAM and
numerical solution for Eq. (3.34).
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Figure 20: Comparison between U2(τ),U3(τ) and U4(τ) with ~ = −0.85 of HAM and
numerical solution for Eq. (3.34).
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Figure 21: Comparison between V2(τ),V3(τ) and V4(τ) with ~ = −0.85 of HAM and
numerical solution for Eq. (3.34).

that the homotopy perturbation method (HPM) and Adomian decomposition method does
not give accurate results for our cases study 1, 3 and 4. Unlike perturbation methods,
the HAM does not depend on any small physical parameters. Thus, it is valid for both
weak and strong nonlinear problems. Besides, different from all other analytic methods,
the HAM provides us with a simple way to adjust and control the convergence region of
the series solution by means of the auxiliary parameter ~. Thus the auxiliary parameter
~ plays an important role within the frame of the HAM which can be determined by the
so called ~-curves. The solution obtained by means of the HAM is an infinite power series
for appropriate initial approximation, which can be, in turn, expressed in a closed form.
Consequently, the present success of the homotopy analysis method for the highly nonlinear
problem of continuous population models for single and interacting species verifies that
the method is a useful tool for nonlinear problems in science and engineering.
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